Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38063767

RESUMO

A new method for the synthesis and deposition of tungsten oxide nanopowders directly on the surface of a carbon-fiber-reinforced polymer composite (CFRP) is presented. The CFRP was chosen because this material has very good thermal and mechanical properties and chemical resistance. Also, CFRPs have low melting points and are transparent under ionized radiation. The synthesis is based on the direct interaction between high-power-density microwaves and metallic wires to generate a high-temperature plasma in an oxygen-containing atmosphere, which afterward condenses as metallic oxide nanoparticles on the CFRP. During microwave discharge, the value of the electronic temperature of the plasma, estimated from Boltzmann plots, reached up to 4 eV, and tungsten oxide crystals with a size between 5 nm and 100 nm were obtained. Transmission electron microscopy (TEM) analysis of the tungsten oxide nanoparticles showed they were single crystals without any extended defects. Scanning electron microscopy (SEM) analysis showed that the surface of the CFRP sample does not degrade during microwave plasma deposition. The X-ray attenuation of CFRP samples covered with tungsten oxide nanopowder layers of 2 µm and 21 µm thickness was measured. The X-ray attenuation analysis indicated that the thin film with 2 µm thickness attenuated 10% of the photon flux with 20 to 29 KeV of energy, while the sample with 21 µm thickness attenuated 60% of the photon flux.

2.
Opt Lett ; 37(24): 5043-5, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23257999

RESUMO

Upon 808 nm excitation, an intense broadband near-infrared emission from Cr4+ has been observed in 80GeS2-20Ga2S3 chalcogenide glass-ceramics (GCs) containing Ga2S3 nanocrystals. The emission band peaking at 1250 nm covers the O, E, S bands (1000-1500 nm). The formation of Ga2S3 nanocrystals (∼20 nm) increases the emission intensity of Cr4+ by more than three times. The quantum efficiency of the present GCs is as great as 36% at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...